Download Introduction To Phase Equilibria In Ceramic Systems Pdf

This book list for those who looking for to read and enjoy the Download Introduction To Phase Equilibria In Ceramic Systems Pdf, you can read or download Pdf/ePub books and don't forget to give credit to the trailblazing authors. Notes some of books may not available for your country and only available for those who subscribe and depend to the source of the book library websites.

Introduction to Phase Equilibria in Ceramic Systems

Introduction to Phase Equilibria in Ceramic Systems Pdf/ePub eBook Author: Hummel
Editor: Routledge
ISBN: 1351436732
FileSize: 1806kb
File Format: Pdf
Read: 1806

GET EBOOK

Introduction to Phase Equilibria in Ceramic Systems by Hummel Summary

Written by a leading practitioner and teacher in the field of ceramic science and engineering, this outstanding text provides advanced undergraduate- and graduate-level students with a comprehensive, up-to-date Introduction to Phase Equilibria in Ceramic Systems. Building upon a concise definition of the phase rule, the book logically proceeds from one- and two-component systems through increasingly complex systems, enabling students to utilize the phase rule in real applications. Unique because of its emphasis on phase diagrams, timely because of the rising importance of ceramic applications, practical because of its pedagogical approach, Introduction to Phase Equilibria in Ceramic Systems offers end-of-chapter review problems, extensive reading lists, a solid thermodynamic foundation and clear perspectives on the special properties of ceramics as compared to metals.This authoritative volume fills a broad gap in the literature, helping undergraduate- and graduate-level students of ceramic engineering and materials science to approach this demanding subject in a rational, confident fashion. In addition, Introduction to Phase Equilibria in Ceramic Systems serves as a valuable supplement to undergraduate-level metallurgy programs.

Phase Diagrams and Heterogeneous Equilibria

Phase Diagrams and Heterogeneous Equilibria Pdf/ePub eBook Author: Bruno Predel,Michael Hoch,Monte J. Pool
Editor: Springer Science & Business Media
ISBN: 366209276X
FileSize: 1495kb
File Format: Pdf
Read: 1495

DOWNLOAD

Phase Diagrams and Heterogeneous Equilibria by Bruno Predel,Michael Hoch,Monte J. Pool Summary

This advanced comprehensive textbook introduces the practical application of phase diagrams to the thermodynamics of materials consisting of several phases. It describes the fundamental physics and thermodynamics as well as experimental methods, treating all material classes: metals, glasses, ceramics, polymers, organic materials, aqueous solutions. With many application examples and realistic cases from chemistry and materials science, it is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Also concisely presented are the thermodynamics and composition of polymer systems. This innovative text puts this powerful analytical approach into a readily understandable and practical context, perhaps for the first time.

Phase Diagrams and Thermodynamic Modeling of Solutions

Phase Diagrams and Thermodynamic Modeling of Solutions Pdf/ePub eBook Author: Arthur D. Pelton
Editor: Academic Press
ISBN: 0128016698
FileSize: 677kb
File Format: Pdf
Read: 677

DOWNLOAD

Phase Diagrams and Thermodynamic Modeling of Solutions by Arthur D. Pelton Summary

Phase Diagrams and Thermodynamic Modeling of Solutions provides readers with an understanding of thermodynamics and phase equilibria that is required to make full and efficient use of these tools. The book systematically discusses phase diagrams of all types, the thermodynamics behind them, their calculations from thermodynamic databases, and the structural models of solutions used in the development of these databases. Featuring examples from a wide range of systems including metals, salts, ceramics, refractories, and concentrated aqueous solutions, Phase Diagrams and Thermodynamic Modeling of Solutions is a vital resource for researchers and developers in materials science, metallurgy, combustion and energy, corrosion engineering, environmental engineering, geology, glass technology, nuclear engineering, and other fields of inorganic chemical and materials science and engineering. Additionally, experts involved in developing thermodynamic databases will find a comprehensive reference text of current solution models. Presents a rigorous and complete development of thermodynamics for readers who already have a basic understanding of chemical thermodynamics Provides an in-depth understanding of phase equilibria Includes information that can be used as a text for graduate courses on thermodynamics and phase diagrams, or on solution modeling Covers several types of phase diagrams (paraequilibrium, solidus projections, first-melting projections, Scheil diagrams, enthalpy diagrams), and more

An Introduction to Ceramics and Refractories

An Introduction to Ceramics and Refractories Pdf/ePub eBook Author: A. O. Surendranathan
Editor: CRC Press
ISBN: 1482220458
FileSize: 1464kb
File Format: Pdf
Read: 1464

DOWNLOAD

An Introduction to Ceramics and Refractories by A. O. Surendranathan Summary

All Refractories Are Ceramics but Not All Ceramics Are Refractories Ceramics and refractories cover a wide range of fields and applications, and their relevance can be traced as far back as 24,000 BC to the first man-made piece of earthenware, and as recently as the late 1900s when ceramics and ceramic matrix composites were developed to withstand ultra-high temperatures. Beginning with a detailed history of ceramics, An Introduction to Ceramics and Refractories examines every aspect of ceramics and refractories, and explores the connection between them. The book establishes refractories as a class of ceramics with high fusion points, introduces the fundamentals of refractories and ceramics, and also addresses several applications for each. Understand Ceramic Properties and Refractory Behavior The book details applications for natural and synthetic ceramics, as well as traditional and engineering applications. It focuses on the various thermal and thermo-mechanical properties of ceramics, classifies refractories, describes the principles of thermodynamics as applied to refractories, and highlights new developments and applications in the ceramic and refractory fields. It also presents end-of-chapter problems and a relevant case study. Divided into three sections, this text: Introduces and details the applications of ceramics and refractories Discusses the selection of materials and the two stages in selection Describes the phase equilibriums in ceramic and refractory systems Outlines the three important systems: unary, binary, and ternary Considers corrosion of ceramics and refractories, failures in ceramics and refractories, and the design aspects Addresses bonding, structures of ceramics, defects in ceramics, and ceramics’ microstructures Covers the production of ceramic powders starting from the raw materials Explains four forming methods Highlights three types of thermal treatments Defines mechanical properties, and thermal and thermo-mechanical properties Classifies materials and designates classes Addressing topics that include corrosion, applications, thermal properties, and types of refractories, An Introduction to Ceramics and Refractories provides you with a basic knowledge of the fundamentals of refractories and ceramics, and presents a clear connection between refractory behavior and ceramic properties to the practicing engineer.

High Temperature Phase Equilibria and Phase Diagrams

High Temperature Phase Equilibria and Phase Diagrams Pdf/ePub eBook Author: Chu-Kun Kuo,Zu-Xiang Lin,Dong-Sheng Yan
Editor: Elsevier
ISBN: 1483286738
FileSize: 1048kb
File Format: Pdf
Read: 1048

DOWNLOAD

High Temperature Phase Equilibria and Phase Diagrams by Chu-Kun Kuo,Zu-Xiang Lin,Dong-Sheng Yan Summary

High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature studies. This book covers many aspects, from the fundamentals of phase diagrams, experimental and computational methods, applications, to the results of research. It provides an excellent source of information for a range of scientists such as materials scientists, especially ceramicists, metallurgists, solid-state physicists and chemists, and mineralogists.

Ceramic Materials

Ceramic Materials Pdf/ePub eBook Author: C. Barry Carter,M. Grant Norton
Editor: Springer Science & Business Media
ISBN: 1461435234
FileSize: 760kb
File Format: Pdf
Read: 760

DOWNLOAD

Ceramic Materials by C. Barry Carter,M. Grant Norton Summary

Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, comprehensive text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties of ceramic materials, students are shown how these materials are processed for a wide diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text, and a chapter is devoted to ceramics as gemstones. This course-tested text now includes expanded chapters on the role of ceramics in industry and their impact on the environment as well as a chapter devoted to applications of ceramic materials in clean energy technologies. Also new are expanded sets of text-specific homework problems and other resources for instructors. The revised and updated Second Edition is further enhanced with color illustrations throughout the text.

Methods for Phase Diagram Determination

Methods for Phase Diagram Determination Pdf/ePub eBook Author: Ji-Cheng Zhao
Editor: Elsevier
ISBN: 9780080549965
FileSize: 1073kb
File Format: Pdf
Read: 1073

DOWNLOAD

Methods for Phase Diagram Determination by Ji-Cheng Zhao Summary

Phase diagrams are "maps" materials scientists often use to design new materials. They define what compounds and solutions are formed and their respective compositions and amounts when several elements are mixed together under a certain temperature and pressure. This monograph is the most comprehensive reference book on experimental methods for phase diagram determination. It covers a wide range of methods that have been used to determine phase diagrams of metals, ceramics, slags, and hydrides. * Extensive discussion on methodologies of experimental measurements and data assessments * Written by experts around the world, covering both traditional and combinatorial methodologies * A must-read for experimental measurements of phase diagrams

Materials Chemistry of Ceramics

Materials Chemistry of Ceramics Pdf/ePub eBook Author: Junichi Hojo
Editor: Springer Nature
ISBN: 9811399352
FileSize: 1370kb
File Format: Pdf
Read: 1370

DOWNLOAD

Materials Chemistry of Ceramics by Junichi Hojo Summary

This book provides fundamental knowledge of ceramics science and technology in a compact volume. Based on inorganic chemistry, it is intended as a reader for graduate students and young researchers beginning work in ceramics. The importance of the book is that it provides a scientific understanding of structure, properties, and processing from the chemical aspect, leading to creation of future ceramics. Ceramics have high hardness, strength, thermal and chemical stability, as well as various electromagnetic functions. To take full advantage of ceramics, their use has been advanced to engineering and electronic ceramics. Most ceramics have been fabricated by powder processing, and new technologies have also evolved such as CVD and sol-gel methods: new ceramics aimed at new functions of highly pure oxides and artificial nitrides, carbides, and borides; fine ceramics focused on precise control of composition and microstructure; and design of unique morphology, such as nanoparticles, nanofibers, nanosheets, mesoporous materials, and hybrids. Materials are composed of atoms and molecules. They are assembled into crystals and are amorphous, leading to 3-D micro/nano structures. In addition to the topics described above, this book shows the importance of chemistry for materials design at the nanometer scale, and that chemistry develops new fields of environment, energy, informatics, biomaterials, and other areas.

Understanding Phase Diagrams

Understanding Phase Diagrams Pdf/ePub eBook Author: N.A
Editor: Macmillan International Higher Education
ISBN: 134901947X
FileSize: 1858kb
File Format: Pdf
Read: 1858

DOWNLOAD

Understanding Phase Diagrams by N.A Summary

Feedback Control Theory

Feedback Control Theory Pdf/ePub eBook Author: John C. Doyle,Bruce A. Francis,Allen R. Tannenbaum
Editor: Courier Corporation
ISBN: 0486318338
FileSize: 724kb
File Format: Pdf
Read: 724

DOWNLOAD

Feedback Control Theory by John C. Doyle,Bruce A. Francis,Allen R. Tannenbaum Summary

An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.

Refractory Technology

Refractory Technology Pdf/ePub eBook Author: Ritwik Sarkar
Editor: CRC Press
ISBN: 1498754260
FileSize: 1849kb
File Format: Pdf
Read: 1849

DOWNLOAD

Refractory Technology by Ritwik Sarkar Summary

This book provides a basic understanding of refractories. This includes the fundamentals of refractory technology supported by phase diagrams as well as detailing the prominent applications of these essential industrial materials. This book covers all the facets of refractory technology, starting from classification, properties, standard specifications, details of the conventional shaped refractories, including relevant phase diagrams & application areas and also the details of unshaped refractories including various classifications, bonding, additives and their applications.

Energy Storage

Energy Storage Pdf/ePub eBook Author: Robert Huggins
Editor: Springer Science & Business Media
ISBN: 1441910247
FileSize: 483kb
File Format: Pdf
Read: 483

DOWNLOAD

Energy Storage by Robert Huggins Summary

Introduction Energy is necessary for a number of reasons, the most basic and obvious involve the preparation of food and the provision of heat to make life comfortable, or at least, bearable. Subsequently, a wide range of technological uses of energy have emerged and been developed, so that the availability of energy has become a central issue in society. The easiest way to acquire useful energy is to simply ?nd it as wood or a hydrocarbon fossil fuel in nature. But it has often been found to be advantageous to convert what is simply available in nature into more useful forms, and the processing and conversion of raw materials, especially petrochemicals have become a very large industry. Wood Wood has been used to provide heat for a great many years. In some cases, it can be acquired as needed by foraging, or cutting, followed by simple collection. When it is abundant there is relatively little need for it to be stored. However, many societies have found it desirable to collect more wood than is immediately needed during warm periods during the year, and to store it up for use in the winter, when the needs are greater, or its collection is not so convenient. One can still see this in some locations, such as the more remote communities in the Alps, for example. One might think of this as the oldest and simplest example of energy storage.

Materials

Materials Pdf/ePub eBook Author: Witold Brostow,Haley E. Hagg Lobland
Editor: John Wiley & Sons
ISBN: 1119281024
FileSize: 1370kb
File Format: Pdf
Read: 1370

DOWNLOAD

Materials by Witold Brostow,Haley E. Hagg Lobland Summary

Presents a fully interdisciplinary approach with a stronger emphasis on polymers and composites than traditional materials books Materials science and engineering is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. Polymer materials are often mixed with inorganic materials to enhance their mechanical, electrical, thermal, and physical properties. Materials: Introduction and Applications addresses a gap in the existing textbooks on materials science. This book focuses on three Units. The first, Foundations, includes basic materials topics from Intermolecular Forces and Thermodynamics and Phase Diagrams to Crystalline and Non-Crystalline Structures. The second Units, Materials, goes into the details of many materials including Metals, Ceramics, Organic Raw Materials, Polymers, Composites, Biomaterials, and Liquid Crystals and Smart Materials. The third and final unit details Behavior and Properties including Rheological, Mechanical, Thermophysical, Color and Optical, Electrical and Dielectric, Magnetic, Surface Behavior and Tribology, Materials, Environment and Sustainability, and Testing of Materials. Materials: Introduction and Applications features: Basic and advanced Materials concepts Interdisciplinary information that is otherwise scattered consolidated into one work Links to everyday life application like electronics, airplanes, and dental materials Certain topics to be discussed in this textbook are more advanced. These will be presented in shaded gray boxes providing a two-level approach. Depending on whether you are a student of Mechanical Engineering, Electrical Engineering, Engineering Technology, MSE, Chemistry, Physics, etc., you can decide for yourself whether a topic presented on a more advanced level is not important for you—or else essential for you given your professional profile Witold Brostow is Regents Professor of Materials Science and Engineering at the University of North Texas. He is President of the International Council on Materials Education and President of the Scientific Committee of the POLYCHAR World Forum on Advanced Material (42 member countries). He has three honorary doctorates and is a Member of the European Academy of Sciences, Member of the National Academy of Sciences of Mexico, Foreign Member of the National Academy of Engineering of Georgia in Tbilisi and Fellow of the Royal Society of Chemistry in London. His publications have been cited more than 7200 times. Haley Hagg Lobland is the Associate Director of LAPOM at the University of North Texas. She is a Member of the POLYCHAR Scientific Committeee. She has received awards for her research presented at conferences in: Buzios, Rio de Janeiro, Brazil; NIST, Frederick, Maryland; Rouen, France; and Lviv, Ukraine. She has lectured in a number of countries including Poland and Spain. Her publications include joint ones with colleagues in Egypt, Georgia, Germany, India, Israel, Mexico, Poland, Turkey and United Kingdom.

Physical vapor deposition and thermal stability of hard oxide coatings

Physical vapor deposition and thermal stability of hard oxide coatings Pdf/ePub eBook Author: Ludvig Landälv
Editor: Linköping University Electronic Press
ISBN: 9176850889
FileSize: 1612kb
File Format: Pdf
Read: 1612

DOWNLOAD

Physical vapor deposition and thermal stability of hard oxide coatings by Ludvig Landälv Summary

The state-of-the-art tools for machining metals are primarily based on a metal-ceramic composite (WC-Co) coated with different combinations of carbide, nitride, and oxide coatings. Combinations of these coating materials are optimized to withstand specific wear conditions. Oxide coatings, mainly ?-Al2O3, are especially desired because of their high hot-hardness, chemical inertness with respect to the workpiece, and their low friction. The search for possible alloy elements, which may facilitate the deposition of such oxides by means of physical vapor deposition (PVD) techniques, has been the goal of this thesis. The sought alloy should form thermodynamically stable or metastable compounds, compatible with the temperature of use in metal cutting application. This thesis deals with process development and coating characterization of such new oxide alloy thin films, focusing on the Al-V-O, Al-Cr-Si-O, and Cr-Zr-O systems. Alloying aluminum oxide with iso-valent vanadium is a candidate for forming the desired alloys. Therefore, coatings of (Al1-xVx)2O3, with x ranging from 0 to 1, were deposited with reactive sputter deposition. X-ray diffraction showed three different crystal structures depending on V-metal fraction in the coating: ?-V2O3 rhombohedral structure for 100 at.% V, a defect spinel structure for the intermediate region, (63 - 42 at.% V), and a gamma-alumina-like solid solution at lower V-content, (18 and 7 at.%), were observed, the later was shifted to larger d-spacing compared to the pure ?-Al2O3 sample obtained if deposited with only Al-target. Annealing the Al-rich coatings in air resulted in formation of V2O5 crystals on the surface of the coating after annealing to 500 °C for 42 at.% V and 700 °C for 18 at.% V metal fraction respectively. The highest thermal stability was shown for pure ?-Al2O3-coating which transformed to ?-Al2O3 after annealing to 1100° C. Highest hardness was observed for the Al-rich oxides, ~24 GPa. The hardness then decreases with increasing V-content, larger than 7 at.% V metal fraction. Doping the Al2O3 coating with 7 at.% V resulted in a significant surface smoothening compared to the binary oxide. The measured hardness after annealing in air decreased in conjunction with the onset of further oxidation of the coatings. This work increases the understanding of this complicated material system with respect to possible phases formed with pulsed DC magnetron sputtering deposition as well as their response to annealing in air. The inherent difficulties of depositing insulating oxide films with PVD, requiring a closed electrical circuit, makes the investigation of process stability an important part of this research. In this context, I investigated the influence of adding small amount of Si in Al-Cr cathode on the coating properties in a pulsed DC industrial cathodic arc system and the plasma characteristics, process parameters, and coating properties in a lab DC cathodic arc system. Si was chosen here due to a previous study showing improved erosion behavior of Al-Cr-Si over pure Al-Cr cathode without Si incorporation in the coating. The effect of Si in the Al-Cr cathode in the industrial cathodic arc system showed slight improvements on the cathode erosion but Si was found in all coatings where Si was added in the cathode. The Si addition promoted the formation of the B1-like metastable cubic oxide phase and the incorporation led to reduced or equal hardness values compared to the corresponding Si-free processes. The DC-arc plasma study on the same material system showed only small improvements in the cathode erosion and process stability (lower pressure and cathode voltage) when introducing 5 at.% Si in the Al70Cr30-cathode. The presence of volatile SiO species could be confirmed through plasma analysis, but the loss of Si through these species was negligible, since the coating composition matched the cathode composition also under these conditions. The positive effect of added Si on the process stability at the cathode surface, should be weighed against Si incorporation in the coating. This incorporation seems to lead to a reduction in mechanical properties in the as-deposited coatings and promote the formation of a B1-like cubic metastable oxide structure for the (Al,Cr)2O3 oxide. This formation may or may not be beneficial for the final application since literature indicates a slight stabilization of the metastable phase upon Si-incorporation, contrary to the effect of Cr, which stabilizes the ?-phase. The thermal stability of alloys for metal cutting application is crucial for their use. Previous studies on another alloy system, Cr-Zr-O, had shown solid solution, for Cr-rich compositions in that material system, in the sought corundum structure. The thermal stability of ?-Cr0.28Zr0.10O0.61 coating deposited by reactive radio frequency (RF)-magnetron sputtering at 500 °C was therefore investigated here after annealing in vacuum up to 870 °C. The annealed samples showed transformation of ?-(Cr,Zr)2O3 and amorphous ZrOx-rich areas into tetragonal ZrO2 and bcc-Cr. The instability of the ?-(Cr,Zr)2O3 is surprising and possibly related to the annealing being done under vacuum, facilitating the loss of oxygen. Further in situ synchrotron XRD annealing studies on the ?-Cr0.28Zr0.10O0.61 coating in air and in vacuum showed increased stability for the air annealed sample up to at least 975 °C, accompanied with a slight increase in ex-situ measured nanohardness. The onset temperature for formation of tetragonal ZrO2 was similar to that for isothermally vacuum annealing. The synchrotron-vacuum annealed coating again decomposed into bcc-Cr and t-ZrO2, with an addition of monoclinic–ZrO2 due to grain growth. The stabilization of the room temperature metastable tetragonal ZrO2 phase, due to surface energy effects present with small grains sizes, may prove to be useful for metal cutting applications. The observed phase segregation of ?-(Cr,Zr)2O3 and formation of tetragonal ZrO2 with corresponding increase in hardness for this pseudobinary oxide system also opens up design routes for pseudobinary oxides with tunable microstructural and mechanical properties.

Introduction to Food Engineering

Introduction to Food Engineering Pdf/ePub eBook Author: R. Paul Singh,Dennis R. Heldman
Editor: Gulf Professional Publishing
ISBN: 0080574491
FileSize: 1767kb
File Format: Pdf
Read: 1767

DOWNLOAD

Introduction to Food Engineering by R. Paul Singh,Dennis R. Heldman Summary

Food engineering is a required class in food science programs, as outlined by the Institute for Food Technologists (IFT). The concepts and applications are also required for professionals in food processing and manufacturing to attain the highest standards of food safety and quality. The third edition of this successful textbook succinctly presents the engineering concepts and unit operations used in food processing, in a unique blend of principles with applications. The authors use their many years of teaching to present food engineering concepts in a logical progression that covers the standard course curriculum. Each chapter describes the application of a particular principle followed by the quantitative relationships that define the related processes, solved examples, and problems to test understanding. The subjects the authors have selected to illustrate engineering principles demonstrate the relationship of engineering to the chemistry, microbiology, nutrition and processing of foods. Topics incorporate both traditional and contemporary food processing operations.

CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide

CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide Pdf/ePub eBook Author: N. Saunders,A.P. Miodownik
Editor: Elsevier
ISBN: 9780080528434
FileSize: 567kb
File Format: Pdf
Read: 567

DOWNLOAD

CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide by N. Saunders,A.P. Miodownik Summary

This monograph acts as a benchmark to current achievements in the field of Computer Coupling of Phase Diagrams and Thermochemistry, often called CALPHAD which is an acronym for Computer CALculation of PHAse Diagrams. It also acts as a guide to both the basic background of the subject area and the cutting edge of the topic, combining comprehensive discussions of the underlying physical principles of the CALPHAD method with detailed descriptions of their application to real complex multi-component materials. Approaches which combine both thermodynamic and kinetic models to interpret non-equilibrium phase transformations are also reviewed.

Physical Metallurgy and Advanced Materials

Physical Metallurgy and Advanced Materials Pdf/ePub eBook Author: R. E. Smallman,A.H.W. Ngan
Editor: Elsevier
ISBN: 0080552862
FileSize: 1106kb
File Format: Pdf
Read: 1106

DOWNLOAD

Physical Metallurgy and Advanced Materials by R. E. Smallman,A.H.W. Ngan Summary

Physical Metallurgy and Advanced Materials is the latest edition of the classic book previously published as Modern Physical Metallurgy and Materials Engineering. Fully revised and expanded, this new edition is developed from its predecessor by including detailed coverage of the latest topics in metallurgy and material science. It emphasizes the science, production and applications of engineering materials and is suitable for all post-introductory materials science courses. This book provides coverage of new materials characterization techniques, including scanning tunneling microscopy (STM), atomic force microscopy (AFM), and nanoindentation. It also boasts an updated coverage of sports materials, biomaterials and nanomaterials. Other topics range from atoms and atomic arrangements to phase equilibria and structure; crystal defects; characterization and analysis of materials; and physical and mechanical properties of materials. The chapters also examine the properties of materials such as advanced alloys, ceramics, glass, polymers, plastics, and composites. The text is easy to navigate with contents split into logical groupings: fundamentals, metals and alloys, nonmetals, processing and applications. It includes detailed worked examples with real-world applications, along with a rich pedagogy comprised of extensive homework exercises, lecture slides and full online solutions manual (coming). Each chapter ends with a set of questions to enable readers to apply the scientific concepts presented, as well as to emphasize important material properties. Physical Metallurgy and Advanced Materials is intended for senior undergraduates and graduate students taking courses in metallurgy, materials science, physical metallurgy, mechanical engineering, biomedical engineering, physics, manufacturing engineering and related courses. Renowned coverage of metals and alloys, plus other materials classes including ceramics and polymers. Updated coverage of sports materials, biomaterials and nanomaterials. Covers new materials characterization techniques, including scanning tunneling microscopy (STM), atomic force microscopy (AFM), and nanoindentation. Easy to navigate with contents split into logical groupings: fundamentals, metals and alloys, nonmetals, processing and applications. Detailed worked examples with real-world applications. Rich pedagogy includes extensive homework exercises.

Physical Foundations of Materials Science

Physical Foundations of Materials Science Pdf/ePub eBook Author: Günter Gottstein
Editor: Springer Science & Business Media
ISBN: 3662092913
FileSize: 651kb
File Format: Pdf
Read: 651

DOWNLOAD

Physical Foundations of Materials Science by Günter Gottstein Summary

In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.